谈谈数学美在数学教学中的作用

时间:2025-03-02 08:37:28
谈谈数学美在数学教学中的作用[此文共10875字]

第一篇:谈谈数学美在数学教学中的作用

“爱美之心,人皆有之”,数学之中无处不存在着数学美:对称美、和谐美、简洁美、奇异美、对立与统一美等等,在数学教学过程中展现数学美,使学生能够感受和欣赏到数学美,(请您继续关注WWW.)把数学的美育功能真正落实在中小学的数学课堂上。同时,发挥它在数学教学中的功能作用。

一、数学美是激发学习兴趣的源泉

作为一名数学老师,对数学蕴涵的美应有着深刻的感受,让同学们欣赏着由几何变换构筑的绝妙天地,领略由同解变形展示的绮丽风光,到处感受到数学中调谐和比例,整齐和匀称,形象与抽象,秩序和逻辑精确和简洁的美丽。为什么许多人对数学的研究孜孜以求?那是数学的美丽使无数的数学爱好者在数学王国里流连忘返。在教学中多给学生一些创新、探究、以至发现的机会,使学生体验发现真理的快乐,例如,三角形的3条中线,3条内角平分线,3条高都交于一点,在教学中我先不告诉学生结果,让学生自已亲手作图,让学生发现这“真理”,使学生发现一个“真理”的惊喜。这是令人惊奇的结论,让学生感受到数学的统一美,数学是这么的美妙。在解题训练中,老师精心设计教学情境,设计不同层次问题的场境,让学生在练习中完成一道道数学难题,智力被一步步推向无极的境界,沐浴着智慧的阳光,给人以证服自然的美感体验,如高斯小时做过的练习:求1+2+3+…+100的和,高斯巧妙地首尾相加算出和,这是对称的美,同学们不感觉到解法的奇异、独特而华丽吗?

二、数学美是教学运用的好帮手

数学中无处不存在数学美,只要我们处处留心,就会处处有美、利用美。如数学远用于导学中,在“利用对数计算”的教学中,我拿一张白纸说:若将这张白纸对折50次后,它的高度是多高呢?同学猜想,最后老师给答案:它高度比地球到月亮的距离还长,学生惊讶中产生了浓厚兴趣,这是数学的奇异美,真是不算不知道,算了吓一跳。可远用于知识的理解、讲解中,如在“数学归纳法”的教学中,数学归纳的原理是难以理解的,我设置了一个游戏,把一块块长方形的木块坚立在地上,当把第一块推倒时,其它的一个接一个依次倒下,让学生寻找倒下的条件,问第一块不倒后面的会倒吗?若抽掉第四块,第三块倒后,则第五块及后面的会倒吗?让学生感受到数学美来源于生活。三、数学美是解题的途径

数学美中蕴涵着解题的方法与途径,在教学中,老师使学生美的享受同时,发掘数学美的解题功能,相信同学们解题理解是深刻的。

例1比较12/11、32/29、96/89、16/15的大小

析解用常规的方法是化成同分母后比较分子的大小,但这样远算量不小!反思通分子,思维豁然开朗,这就是解法的奇异美。

例2如图cd和be分别是△abc中∠acb和∠abc的外角平分线,cd⊥ad,ae⊥be,若bc=a,ca=b,ab=c,求ed的长。析解从图形上看ed和bc可能是平行的,由于有角平分线,垂线,猜想be、cd可能分别是等腰三角形的三线合一,由对称性不难作出等腰三角形abf、三角形acg,易得:ed=1/29(a+b+c),这就是利用数学的对称美,启发我们以对称为突破口,找到解题的启迪。

四、数学美是培养学生思维品质的手段

学生学习的良好习惯、良好的思维品质的养成是提高学生数学文化素养的具体体现。如(a+b)n=an+bn,a+b=b+a,(ab)n=anbn同学们在学习中感受到这些公式和法则的对称美与和谐美,而由于1/2+1/3=2/5,㏒a(mn)=㏒am*㏒an,sin(a+b)=sina+sinb的错误,从某种意义上是从美学观点出发的一种本性的体现。对数学内在美的深刻理解,就得到了美的薰陶,也培养了学生的思考问题的深刻性和批判性。例3已知x1/2+x1/2=8求x2+1/x的值

析解在已知条件中,求出x代入x2+1/x固然可以,但远算量大,把x1/2+x1/2看作一个整体,用“整体代入法”有:x2+1/x=x+1/x=(x1/2+x-1/2)2-2=62.

这简明解法让学生从整体思维中感受到数学的整体美、完整美、结构美,培养学生的整体现,思维的全局性。

“爱美之心,人皆有之”,美给人智慧,美给人享受,让我们享受数学,享受数学的美。

第二篇:谈谈心理学在数学教学中的重要作用

谈谈心理学在数学教学中的重要作用

逸夫中学/陈麒

摘自:《厦门逸夫中学》

摘要:数学是集理论高度抽象化和应用具体化为一体的一门科学知识。教师在课堂上仅仅答疑解惑是不够的,必须注重对学生的心理引导,充分发挥学生主观能动性,还原学生课堂主体,激发学生寻幽探微的兴趣,这样课堂知识才能真正为学生所占有。本文拟分析如何在数学教学中有意识的引入心理学,改变传统数学教学的单一模式,通过积极创设问题情境,引导学生积极参与和主动思考,进而实现课堂教学中的“师生互动”、“生生互动”,达到最佳教学效果。

关键词:数学教学,心理学,论文

教学活动的根本出发点和最终归宿,就是为了解决学生与所学知识间的矛盾,而要解决这一矛盾,学生必须自身参加教师指导下的一切学习活动,如积极主动地接受有关信息,进行独立思考,并经常向老师提供反馈信息,注意学习活动的自我评价和自我调控等。学生是学习过程的主人,是认识的主体、发展的主体和处理信息的主体。因此,只有通过学生自己积极地、主动地、独立地进行学习,才能将课程知识结构转化为学生自己的认知结构和能力。学生在学习上的这种主观能动作用,是任何其它因素所不能代替的,这是学生学习活动发展的唯一的内部原因。

那么,教学过程中如何发挥学生主体的积极性,使其积极、主动地参与教学活动呢?

1、确立正确的教师行为。现代心理学的研究表明,认知与情感是密不可分的,有效的认知往往伴随着肯定、赞许、羡慕等积极的情感,厌烦、不满、轻视等否定的情感难以产生积极的认知,情绪、情感具有感染性,教师本身的情感状态,能对学生起着潜移默化的作用,使课堂上出现某种心理气氛。因此,在教学中教师首先应尊重学生,使自己与学生、学生与学生之间形成良好的、和谐的、民主的关系。其次,教师应成为引导学生学会寻求知识、吸取知识、运用知识,寻求机会的“向导”和“组织者”,成为深刻地理解学生观点、想法和情感特征的“知音”,这样,学生就能以极大的热情、饱满的情绪投入到教学过程中去,形成和谐、积极、友好的教学气氛。

2、创设问题情境,激发学生思维的积极性。主动性的心理特征就是积极地开展思维活动,所谓“课堂气氛活跃”,真正的活跃是指学生思维活动活跃,而不是指对那种没有思考性的问题答来答去的表面热闹。思维总是在分析问题、解决问题的过程中进行的。一般的情况是,当一个人产生了必须排除某一个困难时,或是要了解某一个问题时,思维活动就活跃起来。希尔伯特有句名言:问题是数学的灵魂。在数学中概念、定理、 ……此处隐藏6328个字……利于学生新知识的获取和掌握。下面就结合自己在教学中引导学生操作学具,谈谈一些体会:

一、操作学具有利于学生对几何形体的认识。

由于小学生的年龄特点和认知规律,教师在讲授几何概念知识时,要善于让学生多操作学具,从直观感知中,认识事物的特征,从而获得知识。例 如,教学“长方形和正方形的认识”这一节课时,为了让学生初步掌握长方形和正方形的基本特征,教师应让学生拿出长方形和正方形的学具,数一数长方形和正方形各有几条边?几个角?再让学生用尺子量一量长方形和正方形每条边的长度。通过动手量一量,从中发现长方形每条边的长度有什么特征?对边长度有什么特点?正方形每条边的长度有什么特征?接着再让学生用直角三角板比一比长方形和正方形的每个角是什么角?通过学生亲自动手“数一数”、“量一量”、“比一比”。自己去发现角和边的特点,从而总结出长方形和正方形的特征,归纳出它们有什么不同点和相同点。这种教学方法,不但激发了学生学习的兴趣,使学生爱学、乐学,而且学生自己发现总结出几何形体的特征,就会记忆忧新,知识掌握得更深刻。

二、操作学具有利于学生掌握平面几何图形面积计算公式。

要掌握平面几何图形的面积计算公式,关键让学生理解计算公式的来源。计算公式是在学生已经掌握的知识基础上 成长起来的。因此,教师讲授知识时,应引导学生应用旧知识的迁移,适时、合理的让学生操作学具。从操作学具中去观察、分析,去发现新知识与旧知识的内在联系。从而推导出平面几何图形的面积计算公式。例如,在学习梯形面积计算时,教师应引导学生将两个形状一样、大小完全相等的梯形拼一拼,想一想能拼成已学过的什么图形?学生通过动手、动脑拼图,很快就能发现可以拼成平行四边形。教师在每个学生拼成的平行四边形

基础上,引导学生观察、分析、思考以下两个问题:(1)拼成的平行四边形的底和高与梯形的上、下底和高有什么关系?(2)拼成的平行四边形的面积与梯形的面积有什么关系?在这个操作、观察、思考中,让学生自己发现:梯形的面积=(上底+下底)×高÷2。为了让学生验证梯形面积计算公式的正确性,可以让学生拿出梯形的纸板图形,沿着梯形的中位线剪开,分成两个梯形。接着让学生动手拼一拼,可以拼成已学过的什么图形?学生通过动手剪一剪,拼一拼,发现还是可以拼成一个平行四边形。接着教师引导学生观察、分析、思考:(1)平行四边形的底和高与梯形的上底、下底和高有什么关系?(2)梯形的面积和平行四边形的面积有什么关系?学生通过观察、分析,再次发现“梯形的面积=(上底+下底)×高÷2。使原来推导的梯形面积公式得到证实。在教学中,教师有意识的寓新知识的形成过程于学生操作之中,通过拼一拼,剪一剪,再拼一拼学具,引导学生去观察、分析,去思考梯形面积与拼成的新图形面积之间的内在联系,从而顺利地推导,并验证出梯形面积计算公式。这样教学有利于培养学生观察、比较、分析、概括等能力。

三、操作学具有利于学生理解算理,掌握计算方法。

低年级学生的思维发展离不开具体的学具操作。教师在教学时,要努力多给学生创造动一动学具的机会,帮助学生从操作学具中,去发现算理、理解算理,达到掌握计算方法。 例如:教“9加几”进位加法时,我们除了应用教具学习例题,让学生从例子皮球图中直观地感知到“先凑十”再相加计算比较简便外。为了让学生掌握“凑十法”的应用,应引导学生动手操作。可以让学生拿出预先准备好的9个红圆片,代替盒内的9个皮球,放在桌面的左边,再拿出两个黄圆片代替盒外的两个皮球,摆在桌子的右边。要算9加2得多少?怎样移动圆片使9凑成10?学生通过想一想、动一动,理解了先把小数的2分出1,分出的1和大数的9凑成10,10再加上剩下的1得11的“凑十”计算的方法。由于学生的认知需要经过实践、认识、再实践、再认识的思维发展过程。所以,在学生初步得到感性认识后,还必须借助学具的多次操作活动,才能更好地掌握“凑十法”的算理。因此,学习例题,9+3、9+7得多少时,教师还是要让学生独立动手摆一摆学具,从摆一摆、想一想、说一说中来加深理解先凑十再相加的计算方法。这样教学有利于在掌握“凑十法”的基础上顺利地过渡到抽象地看算式说计算的思考过程。这样教学,不但

培养了学生动手操作能力,也培养了学生语言表达的能力。

四、操作学具有利于学生提高解答实际问题的能力。

由于小学生的思维正处于具体形象思维向抽象逻辑思维过渡的阶段。他们的抽象思维过程自然需要具体形象的支持。教学中适时、适度的操作学具,能发展学生的思维,帮助学生解答较抽象的几何形体的拼、割实际问题。例如,在教学长方体和正方体表面积计算后,有这样一道练习题:“已知两个棱长为3厘米的正方体,拼成一个长方体,这个长方体表面积是多少?”解答这一题目,需要空间想象能力。由于小生的空间想象能力较差,为了引导学生正确理解问题,教师在指导学生练习时,可以让学生拿出两个大小相等的正方体,让他们拼一拼、想一想、说一说拼成的长方体的长、宽、高和原来正方体的棱长有什么关系?学生就不难得出长方体的表面积是(3×2×3+3×2×3+3×3)×2=90(平方厘米)。这时,我们再引导学生从不同的角度分析,又得出长方体的表面积3×2×3×4+3×3×2=90(平方厘米),3×3×6×2—3×3×2=90(平方厘米),3×3×10=90(平方厘米)等算法。接着引导学生对几种算法进行比较,哪一种既简单又合理。通过讨论,学生们都的目的。认识到了3×3×10=90(平方厘米)这种算法是最简单,又合理的。可见在教学中,适时引导学生操作学具,可以帮助学生从不同角度去分析、思考,从中发现事物的特征,寻找到既简单又合理的算法,达到正确解答问题

五、操作学具有助于提高学生的思维能力。

动作与思维密不可分。低年级的学生对新颖的事物特别感兴趣,喜欢 动一动、试一试。所以,在教学中,要向学生提供能突出知识特点的、带有 色彩的直观材料,“投其所好”,让其亲自动手,感知实践。如:教学“有余数除法”时,可组织学生摆彩色小棒。先拿出10根小棒,每4根摆一个正 方形,问可摆几个正方形?还剩几根小棒?并列出相应的除法算式,同时写出剩下的小棒数,然后再让学生分别取出11根至15根小棒,仿此一一进行操作,板书,强化训练,使其程序规范,动作熟练。通过这一动作和感知的协调,促进动作思维不断进行,使学生初步理解了余数的产生和余数的含义,并初步概括出余数的概念。这样引导学生自己从动作中发现、思索、领悟、概括,获得直观的知识,促进了思维的发展。

综上所述,在课堂教学中适时、适度地引导学生操作学具,让学生摆一摆、

拼一拼、量一量、想一想、讲一讲等多种教学手段综合应用,使学生手、眼、口、脑多种感官参与认识活动。这样,不但激发了学生的求知欲和好奇心,而且学生的观察能力、语言表达能力、空间想象能力和逻辑思维能力都能得到训练和加强。这样,学生获取的知识、概念会更清晰,记忆会更牢固。使课堂教学收到事半功倍的效果。实践证明,在课堂教学中,正确适当的操作学具,有利于学生主动获取知识,有利于学生能力的发展。

《谈谈数学美在数学教学中的作用[此文共10875字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式